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Abstract A problem concerning a spherical interfacial crack is solved by the eigenfunction method. The
problem is reduced to a coupled system of dual-series equations in terms of Legendre functions and then to
a system of singular integral equations for two unknown functions. The behaviour of the solution near the
edge of the spherical crack, and the stress-intensity factors and crack-opening displacements are studied.
The case when the crack surfaces are under normal internal pressure of constant intensity is examined.

Keywords Cavity · Composite · Elastic · Inclusion · Interface spherical crack

1 Introduction

Aging and damage of materials are processes that are the causes of many dramatic events in the world.
They may lead to catastrophic failures in oil and gas-storage tanks, pressure vessels, turbine-generator
rotors, steam boilers, pipelines, bridges, airplanes, railways and welded ships [1]. It is also known that
electronic chips sometimes become disfunctional due to mechanical damage. Scientific and engineering
evidence shows that cracks in materials are the first steps in a sequence of processes leading to their
fracture. Internal cracks, in the form of breaks in material solidity, have been examined in the literature for
quite a long time [1, 2]. Special attention [3, 4] has been paid to linear crack problems in unbounded elastic
bodies; the main results were obtained for flat penny-shaped or elliptic cracks. A comprehensive review of
the state-of-the-art can be found in [2, 5, 6]. However, according to experimental analysis of the surfaces
of damaged objects, the initial surfaces of the material breaks are not flat, being mainly of spherical or
ellipsoidal shape [5, 7]. To evaluate the strength of a material with internal cracks, one can start from the
solution of a class of problems within the theory of elasticity for three-dimensional bodies weakened by
cracks with curved surfaces. Such cracks could be modelled by cuts on a part of some surface of revolu-
tion having non-zero curvature. In this case, one has the possibility to vary the geometrical parameters of the
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surface and, by doing this, to make these look more like real cracks. An experimental study of composite
materials emphasizes the practical significance of this class of problems. Specifically, heterogeneous media
are being filled with particles of spherical or ellipsoidal form (for example, a wolframium-carbide matrix
reinforced by diamond grains) [8, 9]. Their mechanical characteristics depend, to a considerable degree, on
the material solidity break, which appears, as a rule, on the interphase boundary and is located on parts of
the spherical or ellipsoidal surface. The theory of non-flat cracks presents quite natural tendencies, when
a complicated geometry of cuts prompts the need to develop more complex mathematical methods and
to increase significantly the number of mathematical operations needed for their analysis. This provides
an explanation of the fact that only a few publications deal with studies of stress fields and displacements
of elastic bodies with non-flat cuts, although the importance of such studies was repeatedly emphasized in
the literature [10].

A problem concerning a spherical crack in an elastic solid was the first in a sequence of problems about
non-flat cracks. The earliest works [11, 12] used representations in terms of analytic functions of a complex
variable. Later these results appeared to be incorrect [13]. Subsequent papers [14, 15] proposed a new
approach based on an eigenfunction method. The problem was reduced to a coupled system of dual-series
equations in terms of Legendre functions. A specific choice of integral operators for the auxiliary functions
allowed one to reduce the problem, either to a system of integro-differential equations [15] or to a system
of Fredholm integral equations of the second kind [14]. Reference [14] used a collocation method to solve
numerically the system of Fredholm integral equations. The stress distributions near the spherical surface
were accurately estimated. In [15] a general solution of the problem in question in explicit analytical form
was suggested, along with an analytical method to solve some integro-differential equations. A local analy-
sis of stresses and displacements near the edge of the spherical crack was performed and the stress-intensity
factors (SIF) were obtained.

These methods were critically reviewed by Martin [16] and he suggested to use the method by Martynenko
and Ulitko as the simplest. He essentially developed this method and provided an accurate asymptotic
analysis for a shallow spherical-cap crack in a homogenous elastic space.

Later both teams (Martynenko, Ulitko (1982, 1983) and Altenbach, Smirnov et al. (1986, 1995)) applied
their methods to the problem concerning a spherical interfacial crack. Altenbach et al. [17] solved the
problem numerically and calculated the SIF. Martynenko and Ulitko [18, 19] obtained analytical results
for the SIF and crack-opening displacements. Although very effective, the Martynenko and Ulitko method
was not exposed sufficiently in the scientific literature. The purpose of this paper is to describe this method
in full detail and to revisit the problem of a spherical interfacial crack.

2 Statement of the problem

Let us consider (Fig. 1) an elastic space (ν2, G2) with a partially separated spherical inclusion (ν1, G1) in
an axisymmetric field of external forces extending to infinity. Here (ν2, G2) and (ν1, G1) are the Poisson
ratio and the shear modulus of the elastic space and the inclusion, respectively. The crack is modelled by a
mathematical cut AMB on a part of spherical surface (r = r0, 0 ≤ θ ≤ θ0, 0 ≤ ϕ ≤ 2π). It is assumed that
the surfaces of the crack do not enter into contact interaction, and that the connection on the remaining
part of the boundary is ideal.

To solve this problem, let us use the superposition principle (Fig. 2). Let us look for the solution of
problem A as a sum of the solutions of the two following static problems: problem B concerns the stress
field of the entire elastic body affected by forces and problem C concerns the equilibrium of an elastic
space with a cut on the surface S, when the forces are applied only to the surface of the crack. In problem
B the system of external forces coincides with the external forces of problem A, while in problem C the
forces on the surface of the cut are equal in magnitude and opposite in direction to those forces that occur
on the conventionally chosen surface of the crack S in problem B. The superposition of the solution of
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Fig. 1 A spherical-cap
crack on the interface
boundary of a spherical
inclusion and an elastic
space

Fig. 2 The superposition principle: the solution of problem A is the sum of the solutions of the two static problems: problem
B on the stress-strained stage of the entire elastic body affected by forces and problem C on the equilibrium of an elastic
space with a cut on the surface S, when the forces are applied only to the surface of the crack. In the problem B the system of
external forces coincides with the external forces of problem A, while in problem C the forces on the surface of the cut are
equal in magnitude and opposite in direction to those forces that occur on the conventionally chosen surface of the crack S
in problem B.

problems B and C will give a solution to the problem regarding the equilibrium of the elastic surface with
the cut, provided the surfaces of the crack are stressless and the body is influenced by the external field
of the axisymmetric forces only. In problems A, B, C the body must have the same geometry and the
same mechanical characteristics. This body may be both homogeneous and inhomogeneous. The solution
to problem B is relatively simple and the stress field does not have singularities in the internal points. The
character of the singularities of the stresses in the initial problem will result from the solution of problem
C. Further research will focus on problem C with forces applied on the crack’s surface [20].

The next stage of the definition of the problem is based on the use of the method of partial areas: the
complex area is divided into two or more simpler areas in such a way that the physical fields in each of
them will be given in the form of eigenfunction expansions. Conditions of continuity of the physical fields
on common sections of the neighbouring areas have to be satisfied.

Let us divide the composite elastic space into two domains: an inner sphere (r ≤ r0) and an external
sphere ( r ≥ r0) (Fig. 1). For each domain the Lamé vector equation of equilibrium,

2
1 − ν

1 − 2ν
grad div �u − rot rot �u = 0, (1)
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must be solved. The unknown coefficients are found from the boundary conditions

σ
(1)
r = σ

(2)
r , σ

(1)
rθ = σ

(2)
rθ , u(1)r = u(2)r , u(1)θ = u(2)θ , (r = r0, θ0 ≤ θ ≤ π) ,

σ
(1)
r = σ

(2)
r = f1 (θ) , σ

(1)
rθ = σ

(2)
rθ = f2 (θ) , (r = r0, 0 ≤ θ < θ0) ,

(2)

where fi(θ) are given functions equal to the loading transferred to the surface of the cut according to the
superposition principle; σ (i)r , σ (i)rθ , u(i)r , u(i)θ are the components of the stress tensor and the displacement
vector for space (i = 2) and spherical inclusion (i = 1), νi are the Poisson ratios, Gi are the shear moduli
of space (i = 2) and inclusion (i = 1) materials.

3 Method of solution

In mathematical terms, the solution of the problem proceeds as follows: the displacement-vector
components and the stress-tensor components are represented by eigenfunction expansions. The result
is a coupled system of dual-series equations for infinite sequences of coefficients.

For the initial relationships, let us take the general solutions of elastic problems concerning a spherical
inclusion and space with a spherical cavity represented in the form of series expansions of the Legendre
function [21]

2G1u(1)r =
∞∑

n=0

[
(n − 2 + 4ν1)Anrn+1 + Bnrn−1

]
Pn (cos θ) ,

2G1u(1)θ =
∞∑

n=1

[
n(n + 5 − 4ν1)Anrn+1 + (n + 1)Bnrn−1

] P1
n (cos θ)

n(n + 1)
,

σ (1)r =
∞∑

n=0

[
(n2 − n − 2 − 2ν1)Anrn + (n − 1)Bnrn−2

]
Pn (cos θ) ,

σ
(1)
rθ =

∞∑

n=1

[
n(n2 + 2n − 1 + 2ν1)Anrn + (n2 − 1)Bnrn−2

] P1
n (cos θ)

n(n + 1)
,

(3)

2G2u(2)r =
∞∑

n=0

[
(n + 3 − 4ν2)Cnr−n − Dnr−n−2

]
Pn (cos θ) ,

2G2u(2)θ =
∞∑

n=1

[
− (n + 1)(n − 4 + 4ν2)Cnr−n + nDnr−n−2

] P1
n (cos θ)

n(n + 1)
,

σ (2)r =
∞∑

n=0

[
−(n2 + 3n − 2ν2)Cnr−n−1 + (n + 2)Dnr−n−3

]
Pn (cos θ) ,

σ
(2)
rθ =

∞∑

n=1

[
(n + 1)(n2 − 2 + 2ν2)Cnr−n−1 − n(n + 2)Dnr−n−3

] P1
n (cos θ)

n(n + 1)
.

(4)

Here An, Bn (B0 = 0), Cn, Dn are infinite sequences of dimensionless coefficients. From the boundary
conditions (2) we have

σ (1)r = σ (2)r , σ
(1)
rθ = σ

(2)
rθ , (r = r0, 0 ≤ θ ≤ π).

These conditions and the orthogonality of the Legendre functions on the interval [0,π ] yield an algebraic
system of equations for the dimensionless coefficients. Solving it we have
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Cnr−n−1
0 = �−1

n2

[
n(n − 1)(2n + 3)Anrn

0 + (n − 1)(2n + 1)Bnrn−2
0

]
,

Dnr−n−3
0 = �−1

n2

{[
2n5 + 5n4 − 5n2 + 4(n2 + n + 1)(ν1 − ν2)− 4(2n + 1)ν1ν2 + 6n + 4

]
Anrn

0

+(n2 − 1)(n + 2)(2n − 1)Bnrn−2
0

}
,

�n2 = 2
[
(2n + 1)ν2 − n2 − n − 1

]
.

(5)

Satisfying the boundary condition (2), we get a coupled system of dual-series equations
∞∑

n=0

1
(n + 2)�n2

(
α11A′

n + α12B′
n
)

Pn (cos θ) = 0, (θ0 ≤ θ ≤ π) ,

∞∑

n=1

1
(n + 2)�n2

(
α21A′

n + α22B′
n
) P1

n (cos θ)

n (n + 1)
= 0,

∞∑

n=0

[(
n2 − n − 2 − 2ν1

)
A′

n + (n − 1)B′
n

]
Pn (cos θ) = f1

(
θ
)
,
(
0 ≤ θ < θ0

)
,

∞∑

n=1

[
n
(
n2 + 2n − 1 + 2ν1

)
A′

n + (n2 − 1
)
B′

n

]
P1

n
(
cos θ

)

n
(
n + 1

) = f2
(
θ
)
,

(6)

where

α11 = 1
2

G2 (n + 2) (n − 2 + 4ν1)�n2 − G1

[
3n4 + 7n3 − 2n2−12n − 2 + 2

(
ν2 − ν1

)(
n2 + n + 1

)+

+ 2ν1ν2
(
2n + 1

)− 2nν2
(
2n3 + 5n2 − n − 6

)]
,

α12 = (n + 2)
{

1
2

G2�n2 − G1 (n − 1)
[
3n + 2 − 2ν2 (2n + 1)

] }
,

α21 = n
{

1
2

G2 (n + 2) (n + 5 − 4ν1)�n2 − G1
[
3n4 + 12n3 + 9n2 − 8n − 10 − 2ν2(n2 − 1)

× (n + 2) (n + 5 − 4ν1)− 2(ν2 − ν1)(n2 + n + 1)− 2ν1ν2(2n + 1)
] }

,

α22 = (n + 1) α12; A′
n = Anrn

0 ; B′
n = Bnrn−2

0 .

(7)

The solution to the system (6) will be in the form of integral operators [15, 22]

1
(n + 2)�n2

(
α11A′

n + α12B′
n
) = 2G1

θ0∫

0

ϕ (t) sin

(
n + 1

2

)
tdt = I(1)n ,

(2n + 1)−1

(n + 2)�n2

(
α21A′

n + α22B′
n
) = G1

θ0∫

0

ψ (t) cos

(
n + 1

2

)
tdt = I(2)n ,

(8)

where the introduced auxiliary functions ϕ (t) and ψ (t) are assumed to be continuous for t ∈ [0, θ0) and
have the following properties

ϕ (−t) = −ϕ (t) , ψ (−t) = ψ (t) ,

θ0∫

0

ψ (t) cos
t
2

dt = 0. (9)
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By solving the systems (8), (5) step-by-step, we get

Cnr−n−1
0 = C′

n = n − 1
α13

[
nI(1)n + (2n + 1) I(2)n

]
,

Dnr−n−3
0 = D′

n = 1
α13α31

[
β21I(1)n + β22 (2n + 1) I(2)n

]
,

(10)

where

α13 = 1
2

G2�n2 − G1 (n − 1)
[

3n + 2 − 2ν2 (2n + 1)
]

,

α31 = G2 (n + 2)
[

2v1 (2n + 1)− 3n − 1
]

− 1
2

G1�n1,

β21 = (n + 1)
{

1
2

G1(n − 1)�n1(n − 4 + 4ν2)+ G2
[
3n4 − 9n2 + 2n − 2

+(ν2 − ν1)(n
2 + n + 1)+ 2ν1ν2(2n + 1)− 2ν1n(n − 1)(2n − 1)(n + 2)

]}
.

β22 = 2
[

3n4 + 5n3 − 5n2 − n + 4 − 2ν1
(
n2 − 1

)
(2n − 1) (n + 2)

−2 (ν2 − ν1)
(

n2 + n + 1
) ]

+ 1
2

G1 (n − 1) (n + 3 − 4ν2)�n1,

�n1 = 2
[
n2 + n + 1 + (2n + 1) ν1

]
.

(11)

Upon the integration of the last two equations of system (6) within the limits from 0 to θ and substitution
for the unknown constant expressions (8), we get the following equations
∞∑

n=0

(
L11(n)I

(1)
n + L12(n)I

(2)
n
)
Pn
(
cos θ

) = f1
(
θ
)
,

∞∑

n=1

(
L21(n)I

(1)
n + L22(n)I(2)n

)P1
n
(
cos θ

)

n
(
n + 1

) = f2
(
θ
)
,
(
0 ≤ θ < θ0

)
,

(12)

where

L11(n) = 2
α12�1

{
G1(n − 1)

[
2n4 + 7n3 + 11n2 + 9n + 4 + ν1(2n + 1)(2n2 + 5n + 4)

− ν2(n2 + n + 1)(2n2 + 7n + 4)− ν1ν2(2n + 1)(2n2 + 7n + 4)
]

+G2(n + 2)
[
n2 + n + 1 − ν2(2n + 1)

][
2n2 − n + 1 − ν1(2n2 − 3n − 1)

]}
,

L12(n) = 2(2n + 1)
�1α12

{
G1(n − 1)

[
ν2(2n + 3)(n2 + n + 1)− n3 − 4n2 − 4n − 3 − ν1(2n2 + 7n + 3)

+ ν1ν2(2n + 1)(2n + 3)
]− 1

2
G2(n + 2)�n2

[
n − 2 − (2n − 1)ν1

]}
, (13)

L22(n) = 2(2n + 1)
�1α12

{
G1(n − 1)

[
ν1(4n3 + 10n2 + 6n + 1)+ 2n4 + 6n3 + 7n2 + 5n + 1

− ν2(n2 + n + 1)(2n2 + 5n + 1)− ν1ν2(2n + 1)(2n2 + 5n + 1)
]

− 1
2

G2(n + 2)�n2
[
2n2 − 1 − (2n2 − n − 2)ν1

]}
,

L21(n) = n (n + 1)
2n + 1

L12(n), �1 = G2[2ν1(2n + 1)− 3n − 1]
− G1(n + 2)[n2 + n + 1 + ν1(2n + 1)].
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If we use the following integral representations for the Legendre functions [22, 23]

Pn(cos θ) = 2
π

∫ θ

0

cos(n + 1
2 )x√

2 cos x − 2 cos θ
dx,

n + 1
2

n(n + 1)
P1

n(cos θ) = − 2
π

∫ θ

0

sin x sin(n + 1
2 )x

sin θ
√

2 cos x − 2 cos θ
dx, (14)

n + 1
2

n(n + 1)
P1

n(cos θ) = 2
π

∫ π

θ

sin x cos(n + 1
2 )x

sin θ
√

2 cos θ − 2 cos x
dx

and change in (12) the order of integration and summation, we arrive at a system of Abel integral equations.
Having solved it and subsequently integrated the resulting correlations with respect to the variable x, we
obtain the following system of functional equations

2
π

∞∑

n=0

[
L11(n)I

(1)
n + L12(n)I

(2)
n

] sin
(

n + 1
2

)
x

n + 1
2

= F1(x),

2
π

∞∑

n=1

[
L21(n)I

(1)
n + L22(n)I(2)n

] cos
(

n + 1
2

)
x

(
n + 1

2

)2 = F2(x)+ c,

(15)

where c is an unknown constant and Fi(x) are, respectively, given by

F1(x) = 2
π

∫ x

0

f1(θ) sin θdθ√
2 cos θ − 2 cos x

,

F2(x) = 2
π

∫ x

0

1
sin x

{
d
dx

[∫ x

0

f2(θ) sin2 θdθ√
2 cos θ − 2 cos x

]}
dx.

(16)

Because of the symmetry of the problem and the properties (9) of the functions ϕ(t),ψ(t), the equalities
(15) could be formulated as follows:

∫ θ0

−θ0

[ϕ(t)M11(t, x)+ ψ(t)M12(t, x)] dt = F1(x),

∫ θ0

−θ0

[ϕ(t)M21(t, x)+ ψ(t)M22(t, x)] dt = F2(x),

(17)

where

M11(t, x) = 2
π

∞∑

n=0

L11(n)
(

n + 1
2

)−1

sin

(
n + 1

2

)
t sin

(
n + 1

2

)
x,

M12(t, x) = 1
π

∞∑

n=0

L12(n)
(

n + 1
2

)−1

cos

(
n + 1

2

)
t sin

(
n + 1

2

)
x,

M21(t, x) = 2
π

∞∑

n=0

L21(n)
(

n + 1
2

)−2

sin

(
n + 1

2

)
t cos

(
n + 1

2

)
x,

M22(t, x) = 1
π

∞∑

n=0

L22(n)
(

n + 1
2

)−2

cos

(
n + 1

2

)
t cos

(
n + 1

2

)
x.
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Separation of the main components in the expressions (13) for Lij and use of the following sums in the
class of generalized functions
∞∑

n=0

cos

(
n + 1

2

)
t cos

(
n + 1

2

)
x = π

2
δ(t − x), (0 < t, x < π),

∞∑

n=0

(
n + 1

2

)
sin

(
n + 1

2

)
t cos

(
n + 1

2

)
x = −π

2
δ′t(t − x),

∞∑

n=0

(
n + 1

2

)
cos

(
n + 1

2

)
t sin

(
n + 1

2

)
x = π

2
δ′t(t − x),

∞∑

n=0

sin

(
n + 1

2

)
t sin

(
n + 1

2

)
x = π

2
δ(t − x),

∞∑

n=0

cos

(
n + 1

2

)
t sin

(
n + 1

2

)
x = 1

4

[
cosec

x − t
2

+ cosec
x + t

2

]
,

∞∑

n=0

sin(n + 1
2 )t sin(n + 1

2 )x

n + 1
2

= 1
2

log

∣∣∣∣∣
cot t−x

4

cot t+x
4

∣∣∣∣∣ ,

∞∑

n=0

cos(n + 1
2 )t cos(n + 1

2 )x

n + 1
2

= 1
2

log

∣∣∣∣cot
t − x

4
cot

t + x
4

∣∣∣∣

(19)

leads to a system of singular integral equations

ϕ (x)− b0

2πa0

θ0∫

−θ0

ψ (t) dt

sin t−x
2

+
θ0∫

−θ0

[
K11 (t, x) ϕ (t)+ K12 (t, x) ψ (t)

]
dt = a−1

0 F1 (x) ,

ψ (x)+ b0

2πa0

θ0∫

−θ0

ϕ (t) dt

sin t−x
2

+
θ0∫

−θ0

[
K21 (t, x) ϕ (t)+ K22 (t, x) ψ (t)

]
dt = a−1

0 F2 (x) .

(20)

Here

K11(t, x) = a1

πa0

{
log

∣∣∣∣cot
t − x

4

∣∣∣∣− log

∣∣∣∣cot
t + x

4

∣∣∣∣

}
+ 2
πa0

∞∑

n=0

L11(n) sin

(
n + 1

2

)
t sin

(
n + 1

2

)
x,

K12(t, x) = b1

4a0
H(x − t)+ 1

πa0

∞∑

n=0

L12(n) cos

(
n + 1

2

)
t sin

(
n + 1

2

)
x, (21)

K21(t, x) = b1

4a0
H(t − x)+ 2

πa0

∞∑

n=0

L21(n) sin

(
n + 1

2

)
t cos

(
n + 1

2

)
x,

K22(t, x) = c1

2πa0
log

∣∣∣∣∣
cot t−x

4

cot t+x
4

∣∣∣∣∣+
1
πa0

∞∑

n=0

L22(n) cos

(
n + 1

2

)
t cos

(
n + 1

2

)
x,

L11(n) = L11(n)
(

n + 1
2

)−1

− a0 − a1

(
n + 1

2

)−1

,

L12(n) = L12(n)
(

n + 1
2

)−1

− b0 − b1

(
n + 1

2

)−1

, (22)
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L21(n) = L21(n)
(

n + 1
2

)−2

− 1
2

b0 − 1
2

b1

(
n + 1

2

)−1

,

L22(n) = L22(n)
(

n + 1
2

)−2

− 2a0 − c1

(
n + 1

2

)−1

,

a = b0

a0
, a0 = a2

a3
, a1 = a4a3 − a2a5

a2
3

, b0 = b2

a3
, b1 = b3a3 − b2a5

a2
3

, c1 = c2d3 − 2a2a5

a2
3

,

a2 = 4G1[G1(1 − ν2)+ G2(1 − ν1)],
b2 = 4G1[G2(1 − ν1)+ G1(1 − ν2)],
a3 = [(4ν1 − 3)G2 − G1][(4ν2 − 3)G1 − G2], (23)

a4 = 4G1[G2(2ν1 − ν2 − 2ν1ν2)+ G2(ν1 − 2ν2 − 2ν1ν2)],
a5 = 2[(3ν1 − 2)G2 − ν1G1][(4ν2 − 3)G1 − G2] − 2[(3ν2 − 2)G1 − ν2G2][(4ν1 − 3)G2 − G1],
b3 = 4G1[G1(4ν1ν2 − 2ν1 − 2ν2 − 1)+ G2(4ν1ν2 − 2ν2 − ν1 − 1)],
c2 = 4G1[G1(1 + 4ν1 − 4ν1ν2)+ G2(1 − 4ν2 + 4ν1ν2)].
As is evident from (21), K12, K21 are Fredholm kernels, and K11, K22 have a logarithmic singularity. To
determine the singularity of the solution of system (20), we shall regularize it [24]. Let us present (20) in
the form of the complex equation

K0f (x)+ kf (x) = �(x), (24)

where

�(x) = a−1
0 [F2(x)+ iF1(x)], f (x) = ψ(x)+ iϕ(x),

f̄ (x) = ψ(x)− iϕ(x), K0f (x) = f (x)+ γ

π i

θ0∫

−θ0

f (t) dt

sin t−x
2

,

kf (x) =
θ0∫

−θ0

[K1(t, x)f (t)+ K2(t, x)f̄ (t)]dt, γ = b0

2a0
, (25)

K1(t, x) = 1
2

[
K22(t, x)+ K21(t, x)+ i

(
K11(t, x)+ K12(t, x)

)]
,

K2(t, x) = 1
2

[
K22(t, x)− K21(t, x)+ i

(
K12(t, x)− K11(t, x)

)]
.

Based on the ideas and results described in [24–26], let us construct the solution of the characteristic
equation

f (x)+ γ

π i

θ0∫

−θ0

f (t) dt

sin t−x
2

= F (x) . (26)

We consider the function of the complex variable z in the plane L, which has a cut along the line [−θ0, θ0]


 (z) = 1
4π i

θ0∫

−θ0

f (t)dt

sin t−z
2

. (27)

To determine this function is tantamount to solving the Riemann boundary-value problem [26]


+ = G
− + g (t) , (28)

where
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+ (x) = 1
2

f (x)+ 1
4π i

θ0∫

−θ0

f (t)cosec
t − x

2
dt,


− (x) = −1
2

f (x)+ 1
4π i

θ0∫

−θ0

f (t)cosec
t − x

2
dt, (29)

G = 1 − 2γ
1 + 2γ

, g (t) = F (t)
1 + 2γ

.

Having solved the Riemann problem, we can represent the characteristic equation as

f (x)= Z (x)
1 − 4γ 2



F (x)− γ

π i

θ0∫

−θ0

F (t)− F (x)

Z (t) sin t−x
2

dt



 , (30)

where

Z (x) =
√

1 − 4γ 2
(

tan
θ0 − x

4

)iλ (
tan

θ0 + x
4

)−iλ

, λ = 1
2π

log
1 + 2γ
1 − 2γ

. (31)

This solution of the characteristic equation (26) allows us to convert the singular equation (24) into a
Fredholm equation, similar to the regularization of the singular equations as described in [24].

Let us rewrite Eq. (24) as follows

f (x)+ γ

π i

θ0∫

−θ0

f (t) dt

sin t−x
2

= �(x)− kf (x). (32)

We temporarily assume that the right part of Eq. (32) is a known function. It is easy to show that the
function kf (x) is regular. Solving Eq. (32) by applying (21), we get

f (x)+ Z (x)
1 − 4γ 2



kf (x)− γ

π i

θ0∫

−θ0

kf (t)−kf (x)

Z (t) sin t−x
2

dt



 = Z (x)
1 − 4γ 2



�(x)− γ

π i

θ0∫

−θ0

�(t)−�(x)

Z (t) sin t−x
2

dt



 . (33)

Thus, the singularity of the solution of Eq. (24) at the end of the interval [−θ0, θ0] is determined by the
function Z(t). Hence, f (t) can be represented in the form

f (t) = Z (t)L (t) , L (t) = L1 (t)+ iL2 (t) , L (−t) = L̄ (t) , (34)

where L (t) does not have singularities at the ends of the interval [−θ0, θ0].
By introducing

1
1 − 4γ 2



�(x)− γ

π i

θ0∫

−θ0

�(t)−�(x)

Z (t) sin t−x
2

dt



=F∗ (x) , (35)

we may easily show that Eq. (33) is equivalent to the Fredholm system

L (x)+ 1
1 − 4γ 2

θ0∫

−θ0

[
L (t)M1 (t, x)+ L̄ (t)M2 (t, x)

]
dt = F∗ (x) , (36)

M1 (t, x) = iγZ (t)

π
(
1 − 4γ 2

)
θ0∫

−θ0

Z̄ (τ )
K1 (t, τ)− K1 (t, x)

sin τ−x
2

dτ + Z (t)K1 (t, x) , (37)
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M2 (t, x) = iγ Z̄ (t)

π
(
1 − 4γ 2

)
θ0∫

−θ0

Z̄ (τ )
K2 (t, τ)− K2 (t, x)

sin τ−x
2

dτ + Z̄ (t)K2 (t, x) .

The kind and properties of the functions Z (t) and L (t) allow us to separate real and imaginary parts in
Eq. (36) and to obtain a system of two Fredholm integral equations for the functions L1 (t) and L2 (t) on
the interval [0, θ0].

4 Results and discussions

Let us investigate the stress and displacement fields near the edge of the spherical cut. It is known that,
while calculating these characteristics near the contour of the penny-shaped crack placed on the boundary
of the division of two different materials, mathematical difficulties in estimating asymptotically the number
of integrals arise. It can be proved that near the boundary circumference of the spherical cut, that is, for
θ 	 θ0 − ε, (ε 
 1), the difference of the displacement in the first approximation is represented by the
integral

�uθ + i�ur ≈ 2r0

G1G2

θ0∫

θ

Z (t)L (t)dt√
2 cos θ − 2 cos t

= 2r0
√

1 − 4γ 2

G1G2

θ0∫

θ

(
tan θ0−t

4

tan θ0+t
4

)iλ
L (t)dt√

2 cos θ − 2 cos t
, (38)

where

�ur = u(1)r − u(2)r = r0

G1G2

∞∑

n=0

I(1)n Pn(cos θ),

�uθ = u(1)θ − u(2)θ = r0

G1G2

∞∑

n=0

I(2)n
n + 1/2
n(n + 1)

P(1)n (cos θ).

Applying the method of asymptotic integration to the integral (38), where θ ∼ θ0, we get

�uθ + i�ur ≈ 2r0L (θ0)
√

1 − 4γ 2

cos 1
2θ0

(
tan θ0−θ

4

tan θ0+θ
4

) 1
2 +iλ

·
�
(

1
2

)
�(1 + iλ)

�
(

3
2 + iλ

) , (39)

where �() is the Gamma function. It should be noted that (39) can be derived from (38) by different
methods. But, obviously, the most rational one is the substitution

sin
t
2

= sin
θ

2
+ S

(
sin

θ0

2
− sin

θ

2

)
. (40)

The stress fields on the surface of the sphere outside the cut are defined by the right parts of the equalities
(12) when θ > θ0. An analysis of the series (12) proves that the main stress components for θ ≈ θ0+ε (ε 
 1)
are found from the sums

σr =
∞∑

n=0

[
a0I(1)n + b0I(2)n

](
n + 1

2

)
Pn (cos θ) ,

σrθ =
∞∑

n=1

[
1
2

b0I(1)n + 2a0I(2)n

]
(

n + 1
2

)2
P1

n (cos θ)

n (n + 1)
. (41)

Considering correlations for the Legendre functions [23], asymptotic expressions for the stress fields can
be represented in the form
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σr ≈ − 1
sin θ

d
dθ

{
sin θ

∞∑

n=1

[
a0I(1)n + b0I(2)n

]
(

n + 1
2

)
P1

n (cos θ)

n (n + 1)

}
;

σrθ ≈ d
dθ

∞∑

n=0

[
1
2

b0I(1)n + 2a0I(2)n

]
Pn (cos θ) , (θ > θ0) .

(42)

If I(1)n , I(2)n in (42) are substituted by the integral operators (8) and the order of summation and integration
is changed, we have

σr ≈ 2a0

sin θ

d
dθ

θ0∫

θ

sin tϕ (t)dt√
2 cos t − 2 cos θ

, σrθ ≈ 2a0
d

dθ

θ0∫

θ

ψ (t)dt√
2 cos t − 2 cos θ

. (43)

On the basis of (25), (31), (34) the last relationships, where θ ∼ θ0, can be presented in the following
equivalent form

σrθ+iσr ≈−2a0 sin θ0L (θ0)

√
1−4γ 2

θ0∫

θ

(
tan θ0−t

4

tan θ0+t
4

)iλ
dt√

2 cos t − 2 cos θ
. (44)

After asymptotic integration we will get

σrθ + iσr ≈ (K2 + iK1) r−0·5
0

(
sin

θ

2
− sin

θ0

2

)− 1
2 +iλ

·
(

sin
θ

2
+ sin

θ0

2

)− 1
2 −iλ

, (45)

where the normal K1 and tangential K2 SIF are determined from

K2 + iK1 = −4a0

√
1 − 4γ 2√r0L (θ0) ·

� (1 + iλ) �
(

1
2 − iλ

)

�
(

3
2

) . (46)

The formulas for K1 and K2 could be reduced to the results for a penny-shaped crack between dissimilar
half-spaces (the problem was studied by Willis [27]) in the limit r0 → ∞. One of the authors of this
paper has carried out such an operation for penny-shaped and spherical cracks in homogeneous space
[28]. This demonstrates the reliability of the method presented here. The character of the asymptotic stress
field near the boundary circumference of the spherical cut on the interface boundary is the same as near
the edge of a penny-shaped crack between two dissimilar half-spaces. If the oscillatory character in this
problem is determined by the multipliers (sin θ/2 − sin θ0/2)−1/2+iλ, then, near the penny-shaped crack, it
is determined by the multipliers (r − r0)

−1/2+iλ.
We shall now consider the case of an external uniform expansion when the cut surfaces are loaded by

normal internal pressure of intensity q. The boundary conditions (2) have the following form

σ
(1)
r = σ

(2)
r , σ

(1)
rθ = σ

(2)
rθ , u(1)r = u(2)r , u(1)θ = u(2)θ , (r = r0, θ0 ≤ θ ≤ π) ,

σ
(1)
r = σ

(2)
r = f1 (θ) = −q, σ

(1)
rθ = σ

(2)
rθ = f2 (θ) = 0, (r = r0, 0 ≤ θ < θ0) ,

(47)

The right parts of system (36) are easy to solve. Note that the solution of the system of integral equations
(36) depends on the elastic characteristics of the material ν1, ν2, G1, G2, geometry of the cut r0, θ0 and the
condition of loading on the surface of the cut. Each of the mentioned parameters has a rather wide range
of variation. In this article we will provide conclusions and numerical results which could be of practical
value.

First of all, it is worth noting that the dependence of the SIF on Poisson’s ratio, having their values
in the interval 0·2 < ν1, ν2 < 0·42, is insignificant. For example, with ν1 = ν2 = 1/3 and ν1 = 1/3, ν2 =
1/4 (G1 = G2) SIF K1 and K2 are, respectively, equal to 0.457 and 0.462.
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Fig. 3 Dependence of
normal K1 and tangential
K2 SIF on the ratio of
shear modules
β = G1/G2 inclusion and
matrix for different values
of the angle of the cut
(θ0 = 12; 24)

Figure 3 shows the SIF behaviour depending on the ratio of shear moduli β = G1/G2 inclusion and
matrix for different values of the angle of the cut (θ0 = 12; 24). Obviously, the main changes of SIF K1 and
K2 take place when β increases to values of β � 5. This means that a further increase of the ratio of shear
moduli of inclusion and matrix should not lead to significant changes in the behaviour of the crack on the
interface in composite materials.

These results allow us to compare SIF for composite (β > 1) and homogeneous (β = 1) materials. The
case 0 < β < 1 is not of practical interest. Figure 3 shows that, with for increased values of β, SIF increase
and exceed the corresponding values of SIF for a homogeneous material. If we introduce the parameters
S1 = K(c)

1 /K(0)
1 , S2 = K(c)

2 /K(0)
2 , (upper indices correspond to composite and homogeneous materials), then,

with 1 < β < 60, the parameters Si (i = 1, 2) are in the interval 1 < Si < 1·5.

5 Concluding remarks

The class of problems linked to the interaction of matrix and inclusion is interesting from the point of view
of the mechanics of composite materials reinforced by hard particles. Cracks on the interface boundary of
matrix and inclusion in such materials could appear due to mechanical coercion or environmental influence.
Several scientific works present mostly numerical methods for the solution of this class of problems, which
is explained by mathematical difficulties arising in the analytical approach. However, only an analytical
solution is capable of covering all the singularities of the problem, and giving a general picture of the
mechanical conditions of the system dependency on changes in the problem parameters, such as external
loading, geometry of the crack, elastic constants of matrix and inclusion, etc., and, thus, to predict the
behaviour of the cut when these parameters change. The results of this work show the advantages of such
an approach. In particular, we obtained analytical expressions for the components of the stress tensor and
the SIF near the edge of the spherical crack on the interface boundary. When the surfaces of the crack are
under a normal internal pressure of constant intensity, the dependencies of the SIF on the ratio of the shear
moduli β inclusion and the matrix are shown. These dependencies demonstrate that the main changes of
the crack’s behaviour take place for β ∈ [1, 5]. We also compared the values of the SIF for composite and
homogeneous materials.
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